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N/2
Il gz=eXp{—%(G§+o§+o§+a§+af2+a§3+o§l)
A=1
i
T N2 (0104023 + 010303, + 010,013+ 0,030,3
+ 020403, + 030,401)

1
+ N (01020304 + 0,0303101, + 0304013023+ 030402303,

+0104031012+ 0103012023 +0102023031)}

[oti)

where O(1/N) represents the terms of order 1/N or
higher in which the terms of order 1/N contain only
even powers of the o’s.

(IL1)

APPENDIX III
Evaluating the sevenfold integral (2.3)

III. 1. The o, integration
N/2
Substitute for IT g, from (IL.I) into (2.3), combine
A=1

the terms in the e;ponent involving g;, complete the
square, and perform the o, integration.
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IIL. 2. The remaining integrations

One continues in this way, carrying out the successive
integrations with respect to g, 0s,. . ., until finally (2.5)
is obtained.

It is instructive to compare these integrations with
those of the earlier paper (Appendix IV).
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Conditional Probability Distributions of the Four-Phase Structure Invariant
On+ Qx+ Q1+ Q@ in P1%

By HERBERT HAUPTMAN AND EDWARD A. GREEN
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A crystal structure in PT is assumed to be fixed and the seven non-negative numbers R;, R;, Rs, Rs, Ria,
R,3, Ry, are also given. It is assumed that h)k,I.m are random variables uniformly and independently
distributed over the subsets of reciprocal space defined by

IEhI:RIa ]Ek|=R2, |E||=R3, IEmI=R4a (1)
[Eh+kI=R12y ]Ek+ll=R23’ IEH—hI = Ray, (2)
and
h+k+1+m=0. 3
Then the structure invariant
P=¢n+ ot @1+ Pm “

is a function of the primitive random variables h,k,I,m. The conditional probability distribution of ¢,
given (1) and (2), is obtained and compared with the conditional probability distribution of ¢ when
only (1) is given. Some calculations are presented which show the usefulness of the distribution, given

(1) and (2), in estimating the value of ¢.

1. Introduction
The methods introduced in two previous papers
(Hauptman 1975a, b) for P1 are applied here to the space

* Presented at the Charlottesville meeting of the ACA,
March 9-13, 1975, Abstract Al.

group PT. Again, as in the earlier work, the joint
probability distribution of seven structure factors
[Green & Hauptman, 1976, equation (2.5)] leads
directly to the conditional probability distribution of
the four-phase structure invariant ¢y+ @y + @+ Om,
given the seven magnitudes | Ey|, | Exl, |E\l, | Ewls | En 41l
|Ex +1l> |Ey+ |- However, in contrast to the earlier distri-
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bution which is continuous, the distribution to be
derived here is discrete because the structure invariant
has only the two possible values, 0 or z.

2. The joint conditional probability distribution of the
four phases @y, @y, 95, 0, given the seven magnitudes,
|Enls |Exls |Erls |Emls |En 4 xls [Excals 1Es gl

Suppose that a crystal structure consisting of N iden-
tical atoms per unit cell in the space group PT is speci-
fied and that the seven non-negative numbers R;, R, R,
R,, R;5, Ry, Ry, are also fixed. Denote by ¢, the phase
of the normalized structure factor E,,. Define the four-
fold Cartesian product W x W x W x W of reciprocal
space W with itself to consist of the collection of all
ordered quadruples (h,k,I,m) of reciprocal vectors
h,k,I,m. Suppose finally that the ordered quadruple
(b,k,I,m) of reciprocal vectors is a random variable
which is uniformly distributed over the subset of the
Cartesian product W x W x W x W for which

IEh|=R1, IEkl=R2, |E1|=R3, lEm|=R4, (2-1)
lEh+k|=R12, |Ex 111 = Ry, | Eyynl =Ry, (2-2)

and
h+k+14+m=0. 2.3)

[Strictly speaking, in order to insure that the range of
the primitive random variable (h,k,I,m) be non-vacu-
ous, it is necessary, for example, to replace the equality
|Epl=R; of (2.1) by the inequalities R, <|E,|<R,+
dR,, where dR, is a ‘small’ positive number, efc.]. In
-view of (2.1)—(2.3), the random variables h,k,I,m, the
components of the ordered quadruple (h,k,I,m), are
not independently distributed in reciprocal space.
Then ¢n, @i, ¢1,¢m, the phases of the normalized struc-
ture factors E,, Ey, Ey, E,, as functions of the primitive
random variables h,k,l,m, are themselves random var-
iables. Denote by P(®,, @,, D5, D, | Ry, R,, Rs, Ry, R,,,
Ry, Rs;) the joint conditional probability distribution of
the four phases ¢y, @i, 91, 0, given (2.1), (2.2) and (2.3).
Then P(D,,®,,®3,P, | Ry, Ry, Ry, R, Ry, Rys, Ryy) is found
from (2.5) of the previous paper (Green & Hauptman,
1976) by fixing the magnitudes of S;, S,, Ss, Sy, S125 Sa3,
S5, in accordance with the scheme

[Sil=Ry, |S2|=R2, |83l =Ra, |Ssl =Ry, (2-4)
. |S12|=R12, Istl'—"Rza, |S31|=R31, (2-5)
l.e,
S1=R; cos D, S,=R, cos D,,
S3=R3 COS ¢3, S4=R4 COS ¢4, (2.6)
S12=Ry; €08 Dy, Sp3=R;3 C0s Dy3,
S31=R31 Cos ¢31, (2.7)

where &;, is the variable associated with the phase
On+x, €EC., summing with respect to S,, Sz3, Ss; over their
two possible signs (+ and —) or, equivalently, sum-

ming with respect to @,,, @,3, P;; over their two pos-
sible values (0 and =), and multiplying the result by a
suitable normalizing factor. Carrying out these sum-
mations one finally obtains, correct up to and including
terms of order 1/N [since O(1/N) of the previous paper
consists of all terms of order 1/N or higher in which
the terms of order 1/N contain only even powers of the
S’s),

P(¢1a (pz: ¢3a ¢4 | Rla R29 R3, R4a R12a R23, R31)

1
& - €XP {—Bcos (D, + P, + D3+ D,)}

R
x cosh 212 gosh Kl copn Rl 5)
where
2

B= N R1R2R3R4, (2.9)

le = [RfRﬁ + R§R§ + 2R1R2R3R4
x o8 (@, + @, + D3+ PH]Y2,  (2.10)

Y23 = [R%Rg + RiRi + 2R1R2R3R4
x €08 (D, + D, + D3+ P12, (2.11)

Y31 = [R%R% + R%Ri + 2R1R2R3R4
x €08 (D, + D, + D5+ P12, (2.12)

and K is a suitable normalizing constant, independent
of @,,®,, ®;,d,. Although K is readily found by sum-
ming (2.8) over the 16 sets of values of &,,®,,P;, P,
and setting the result equal to unity, the value of this
normalizing factor is not needed for the present pur-
pose and is therefore not derived explicitly. Equations
(2.8)—(2.12) should be compared with equations (2.5)~
(2.9) of the earlier work in P1 (Hauptman, 1975b), but
it should be emphasized again that the present distri-
bution (2.8) is discrete since each of @,, ®,, @;, @, takes
on only the two values 0, 7.

It is clear from (2.8)—(2.12) that the distribution (2.8)
is a function of the sum &=®,+ @, + d;+ P,. Hence
(2.8) leads directly to the conditional distribution,
given (2.1) and (2.2), of the sum ¢=¢,+ ¢+ 01+ ¢,
as is shown next.

3. The conditional probability distribution of the
structure invariant ¢ =@y, + ¢, + ¢, + @, given the seven
magnitudes |Ey|, |Eyl, |Ejl, |Emls |Enskls |Exials |Eyynl

Using the same hypotheses as in §2, the structure in-
variant
3.0

is a random variable whose conditional probability
distribution, given (2.1) and (2.2), P(® | Ry, R,, Rs, Ry,
Ry5, R,3, Ry, is readily found from (2.8)-(2.12). Thus,
correct up to and including terms of order 1/N, the
major result of this paper is given by

P=¢n+ Pt Q1+ Pm
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P((p I Rl; RZ: R35 R41 RIZ; R231 R31)

~ %exp (—Bcos D)

RZBZZB cosh R31231

RIZZIZ cosh b N1/2

et (3.2)

x cosh

where B is defined by (2.9),

Z,,=[R*R2+ RZR2+2R,R,RR, cos B2,  (3.3)
Z,3=[R3R}+ R2R5+2R,R,R3R, cos ]2, (3.4)
Z31 = [RgR% + R%Ri + 2R1 R2R3R4 COs ¢]1/2, (3 .5)

and the normalizing constant L is readily found to be

R,,Z} VA ZH

L=exp (—B) cosh ]‘\ZIU;Z h R]z\;mzs cosh R;\lf”;"l

R,Z5 R,:75; Ry, 73
+exp (B) cosh 1‘\;1/;2 osh 12\;1/223 cosh ;\}1/21 ,
(3.6)

where

ZI%=R1R2 i R3R4 ) (3.7)
Z#H=R,R3t RR,, (3.8)
Z=RsR + RR,, (3.9)

and the upper (lower) signs go together.
If one denotes by P (P_) the conditional probability,
given (2.1) and (2.2), that

9=¢nt ot o1+ 9m=0 (), (.10
or that
cosp=+1(-1), 3.11)
or that
EyELE\E,, be positive (negative) , (3.12)
then (3.2) is replaced by the more suggestive
1 _ R, Z%
P,~ 7 Xp (F B) cosh —1]\;1/—212
& 7t
x cosh Rjz\;gzn h R;\;l,;l ) (3.13)

where the upper (lower) signs go together and
L,ZE,Z%,Z§ are given by (3.6)-(3.9).

The similarity between (3.2) and (3.13) with the
major result of the earlier work in P1 [equation (3.2),
Hauptman, 19756] is noteworthy. However, it must be
stressed again that the present distributions are dis-
crete, i.e. @ must be 0 or 7, while the earlier distribution
is continuous.

It should be observed finally that P, may lie any-
where between 0 and 1; P, is close to 0 or close to 1
according as Ry,, R,s, R3; are all relatively small or all
relatively large respectively.

3.1. The conditional expected value and conditional
variance of cos ¢
It is clear from (3.13) that the conditional expected
value of cos ¢, given (2.1) and (2.2), is simply

e=¢(Ccos ¢) =€(Cos @| Ry, Ry, Ry, Ry, Ry3, Rys, R3p)

~P,—P_. (319

Likewise the conditional variance of cos ¢, given (2.1)
and (2.2), is found from (3.14) to be
o?=0%(cos ¢| Ry, R;, Rs, Ry, Ry3, Ry3, R3y)

~e(cos? p)—[e(cos p)*=4P . P_. (3.15)

It follows from (3.15) that the conditional standard
deviation is given by

o=2/P,P_. (3.16)
3.2. The special case |Ey  y| ~[Ey 1| ~|E 1n| =0
In the case that
[Ensxl=Ry~0, (3.17)
[Ex+1l =Ry >0, (3.18)
[Erenl=R3 >0, (3.19)

(3.13) is replaced by

1 —
Pi(IR;;~ Ry3~ Ry ~0)~ Zexp (¥B) (320

where

L=2cosh B (3.21)

so that, in this special case, P, <3, ¢ is probably equal
to =z, and the larger the value of B the more likely it is
that p=m.

4. The conditional probability distribution of the
structure invariant ¢ =@y, + @y + @, + @, given the
four magnitudes |Ey|, |Eyl, |Eil, |Enl

If, instead of being given the seven magnitudes (2.1)
and (2.2), one is given only the four magnitudes (2.1),
then the conditional probability distribution of g,
given (2.1), is found from (3.1) of the previous paper
(Green & Hauptman, 1976) to be, correct up to and
including terms of order 1/,

P.d~ jlf exp ( +

0| &

) , @.1)

where

M=2 cosh l; , 4.2)

and P_(4)[P_(4)] is the conditional probability, given
(2.1), that
9=0 (n)

cosp=+1(-1).

4.3)
or that
4.4)



48 THE FOUR-PHASE STRUCTURE INVARIANT ¢, + ¢+ ¢1+¢m IN PT

Equation (4.1) should be compared with equation (4.1)
of the earlier work in P1 (Hauptman, 1975b). Partic-
ularly noteworthy is the comparison of (4.1) with (3.20)
which illustrates with particular force the dramatic
change which may take place when all seven magni-
tudes (2.2) and (2.1) are assumed to be given instead
of merely the four magnitudes (2.1). In sharp contrast
to (3.20), P,(4)>1, ¢ now is probably equal to 0, and
the larger the value of B the more likely it is that ¢ =0.

5. The applications

A crystal structure in PT consisting of N =90 identical
atoms in the unit cell was constructed and 6701 norm-
alized structure factors Ej calculated. Using the
299|E[’s > 2 (i.e. |Ey| >2, |Ey| > 2, |E}| > 2, | Em| >2) the
1000 quartets

(5.1)

were constructed having the largest values of B. The
1000 values of P, equation (3.13), and of the standard
deviation g, equation (3.16), were calculated and these
are shown in Table 1* arranged in increasing order of
the standard deviation (SIG). The column headed
cos (T) lists the true values of cos ¢. The three special
invariants with serial numbers 522, 634, 698 do not
obey the distribution law (3.13), since h=k, and these
are therefore not considered further. It is noteworthy
that the first discrepancy in the table occurs at invariant
786. Thus the first 782 invariants are calculated with
perfect accuracy and, of these, 745 are equal to 0 and
37 equal to . The preponderance of 0 values is a con-
sequence of equation (4.1) since small values of ¢ are
correlated with large values of B which, in view of (4.1),
implies that ¢ is probably equal to 0. Toward the end
of Table 1, as P, values tend toward 1, one observes
increasing numbers of incorrect indications. Naturally,
in the applications, one would not use the latter in-
variants since, in view of the large standard deviations,
they are known not to be reliably determined. It is
noteworthy that the estimates are somewhat more reli-
able than the values of P, appear to indicate, at least
for the smaller values of ¢. This is probably due to the
fact that (3.13) is correct to terms of order 1/N only,
and the ability to take into account terms of order
higher than 1/N would probably lead to a more accur-
ate formula for P, at least for the larger values of B.
Toward the end of Table 1, where o values are large
and B values tend to be small, (3.13) appears to yield
more accurate values of P, since here one observes the
expected fraction of correct estimates as indicated by
the value of P,.

h+k+1+m=0

* Only 50 entries are shown here. The full table has been
deposited with the British Library Lending Division as Supple-
mentary Publication No. SUP 31305 (20 pp., 1 microfiche).
Copies may be obtained through The Executive Secretary,
International Union of Crystallography, 13 White Friars,
Chester CH1 1NZ, England.

Table 1. 1000 values of P, equation (3.13), and o,
equation (3.16), for a structure in P1 consisting of
N =090 identical atoms in the unit cell

’ o Maanttudes, |E) —
Ho. [ |4 i H 3 11 t ] RBiOEBT TR P os(r) P+ si6
6 8100 T83 T 68 Tios 368 295 280 239 3.00 425 356 1.6 €59 0.89 0.0%
74T ZNo 1T s T F 3 o356 346 339 295 407 239 241 274 0.9 C.99  0.003
8 2T0o 6106 1 T5 TS 246 340 239 264 3263 425 186 2.3 0.9 0.99 0.003
9 1120 T To J o1 eT T 366 344 209 2.35 297 372 210 1.9 0.9 0.9 0,00
W 278 270 267 §ZF1 417 345 333 223 356 418 150 238 0.9 0.999 0.007
1 278 787 F 23 FIZF AN LK 60 2.4 122 139 204 227 0.99 0.98 0.004
18278 FT1 8T T V58 437 3R 235 23 336 366 0.26 1.89 0.9 0.998 0.07
W4 F7 T 23 7T 5100 418 300 268 2.28 149 3.9 1.3 171 0.99 0.9% 0.0%
W 1120 6 3 T 01 TTW 2 368 200 2.9 222 209 133 30 1.6 0.9 0.98 0.0M
W 457 30T 1N 0 EFE 408 299 226 203 1.9 202 2.3 155 0.9 0.958 0.075
40 15T 714 201 0 T 33 396 302 258 238 196 132 2.67 1.69 1.00 0.9 01719
402 457 T90 ITO0 637 a8 263 2.60 257 267 133 20 1.6 099 0.991 0.8
03 8TEO 1 Ts TN oo T o 36 39 277 209 264 0.97 261 1.60 0.99 0.9 0.8
44 1 TS 177 6T T BUT NI 204 277 246 197 150 2.3 156 0.99 0.991 0.182
45 705 TTMo 207 B0 J &2 2.7 2.5 246 3.32 068 221 1.63 099 0.9 0.8
66 457 567 39T ITW 1 418 .02 2.5 251 0.2 010 006 1.8 -1.000 0.029 0.339
57 705 8100 30T ITW 5 425 16 2.3 221 239 1,38 172 1.82 0.9 0.970 0,30
8 457 B9l 310 1 FF 418 288 261 2.4 ISk 1.5 0.0 161 0.99 0970 0.340
9 1 T5 3108 730 T o1 339 316 263 2.5 135 153 2.08 1.5 0.9 0.970 0.30
0 4 T T To T 28 730 3% 34 37 2.3 004 049 02 1.9 -C.99%9 0.030 0342
6% 157 ETo 177 4130 39 344 04 pan 230 A0 233 221 0.989 0.2 0.42)
€7 705 TTT 363 T IS 42 300 295 226 0.01 038 0.5 1.89 -1.000 0.047 0.423
68 91T 30T T B8 § 7% 372 299 2.80 236 1.25 104 2.5 1.1 0.99 0952 0.423
633 10 5T 3 0T T8N 2 ¥ B4 326 2.9 277 2.60 2.68 LM N6 1.59  0.999 0.95 0.423
60 457 TEY FW 1 5 9T 418 336 2.5 2.05 029 0.9 0.0 1.60 -9 0.047 0.424
601 8T00 1 Ts § 31 0138 %6 339 2.7 235 254 049 1.9 1.65 .99 0.5 0427
642 91T Zno TTW 1 I T o 372 346 302 2.60 LW 117 228 2.25 099 0.951 0.4
63 2TT ZWo 3T T 332 370 268 2.67 248 N4 062 043 1.9 -0.999 0.0 043
64 91T TTZo o047 B 78 22 366 245 2.3 235 104 161 175 0.99 0.950 0435
65 197 2o ETo 337 3580 346 344 226 028 0.47 068 212 -0.999 0.050 0439
8 278 30T 210 TES 417 2% 258 222 074 N 280 1.5  1.000 0.871 0.60
78 705 3T1 2T T 013 % 425 372 370 205 149 154 145 2.66 0.9 0.869 073
3 687 8To 30T Y78 367 34 29 208 142 125 151 169 0.9 085 0.677
7 91T 177 538 T32 372 1M 299 207 2068 083 )35 155 now 0.8 n.em
8 278 714 JF 4 T TO AW 312 268 206 0.8 058 008 157 <l.o00 013 0.680
7 705 36 T 90 31T 42 316 263 218 108 L5 145 LN -l.odo 0.85 0.ea
278 610 FZ1 1T 7 417 340 277 203 N 15 193 179 0.9 0.865 0.683
7 2To 1Ts B 23 3108 346 330 300 243 15 123 128 1.90 0.9 0.8 0686
7 610 098 FI8 27T 0 348 305 270 2.5 0.8 076 2.3 1.60 0999 0.860 0.69)
7 457 ETo 85T F 13 408 a8 250 228 139 126 152 1l 0.9 0859 0.69¢
81 278 T ag 332 TWZ 417 356 248 232 345 05 0.50 170 0.99 0763 0.850
82 457 63§ B2 710 418 277 28 255 L8 025 0.3 L0 -0.99 0238 o085
83 1 57 FT01 0N 7 288 296 299 265 230 097 050 218 160 1.000 0760 0853
884 1 82 578 B 91 210 329 317 2.8 258 0.9 0.5 0.5 1,70 -1.000 0.243 0.858
885 8Y00 T 1% T T 6 T T 268 239 250 228 N6 1.00 0.50 1.58 -1.000 0.286 0,85)
86 705 B34 310 T8 42 29 26 213 080 160 1.2 1.56 0.99 0.753 o0.862
87 2T T 9% 2T 0 047 370 306 255 245 240 0.23 0.9 157 -0.999 0752 0861
888 705 §23 01T T ¥ 2 425 300 277 2N 09 n4g o0.ss 1.66  -1.000 0.251 0,867
89 10 BY 1 Ys ¥ 23 ¥ 77 38 339 300 25 085 1,23 0.4 2.15  0.99% 0.25) 0.870
830 278 327 TT o0 T 41 437 310 240 232 2.05 0.3 1.3 1.61 0999 0.745 on.gn

Table 2. Comparison of our (3.13) with Giacovazzo’s (13)

[——————O3served Magnitudes, |E|———
3 11 T E L

Ro. ] 3 i 3 £ el I C I ] s(Ty  P(3) PO
$66 4 57 F 67 39T ZW 1 408 302 25 251 028 010 006 1.81 -1.000 0.029 0.017
S70 4 I8 §To %28 730 25 34 307 231 0.0 049 0.21 1.9 -1.000 0.030 0.019
$93 91T 2TT 8100 F 1oz 372 370 368 2.5 1.06 0.4 0.47 2.8 -1.000 0.033 0.124
63 705 278 9 &) 032 425 417 270 234 107 020 0.5 248 -1.000 0.055 0.224
763 4 57 B0 3 T 167 418 368 242 233 1.20 045 0.00 1.93 -1.000 0.104 0.328
4 TF 30T TT 9 OTN o0 3s6 299 279 277 125 0.6 029 1.83 -1.000 0.142 0.3
% 218 496 30T 323 41 206 299 23 05 06 07¢ 200 -).000 0165 0.248
80 4 78 T0 51 30T 37T 8 3.5 3.26 299 2.60 0.42 027 1.25 2.00 -1.00 0.148 0.402
80s 1 Ts 3IT6 017 210 T 339 36 277 2.5 0.5 01 1.00 1.65 -1.000 0.152 0.227
89 457 ETo 77E T3 418 34 312 216 139 0.03 0.68 215 -1.000 0.155 0.705
813 610 T15 07V 5T5 34 3.3 277 220 0.09 1.00 0.5 1.5 -1.000 0.16) 0.228
814 2TZT 506 4 8 B 43 370 304 280 2.2¢ 1.00 0.30 046 1.57 -1.000 0.161 0.233
a6 705 1 %7 1 3F F2a a5 39 211 209 1.3 0.36 040 1.65 -1.000 0.168 0.559
817 8760 275 T 28 F 11 368 279 276 267 0.61 0.62 0.7 1.68 -1.000 0.165 0.205
819 1 57 I E3 367 T s 396 295 264 234 0.06 0.3 1.18 1.60 -1.000 0.168 0.307
87 8Wo T g€ 728 3T Z 368 3.06 226 253 006 1.06 0.71 175 -1.000 0.185 0.33
88 4 I8 ¥ To ZTo 468 35 344 258 226 004 030 1.27 1.5 -1.000 0.18 0.378
80 4 8 5 E7 2T 0 TN 1 35 302 25 250 1.08 0.5 014 1.5 -1.00 0.9 0.316
s 2T Tno 30T T2 370 346 299 253 002 0.47 155 205 -1.000 0.185 0.7
89 457 J 01 ZTo2 15T 418 29 255 2.5 0.04 1.20 0.68 1.80 -1.000 0.199 0.455
86 ¢ I8 30T T ) 7 332 356 29 275 244 1.25 058 0.05 1.59 -1.000 0.215 0.430
824 705 T 17 3FT 03 F 425 275 29 233 015 038 1.39 1.5 -1.000 0.228 0.540
6 2 78 2TIT T o2 757 417 370 25 218 05 0.0 1.07 1.5 1.000 0.230 0.480
882 ¢ %7 63% 872 T 1o 438 27 259 2.5 1.52 0.25 035 1.70 -1.000 0.238 0.705
889 10 BY 175 23 T 77 38 3.3 300 25 0.8 1.23 041 215 1.000 0.25 0.708
82 787 T YT I F 3 3138 336 392 2.5 237 0.22 .40 043 1.62 1.000 0.25 0.580
895 705 T 38 363 FF6 425 3.05 2.95 2.22 158 0.26 0.5 1.8 -1.000 0.267 0.845
87 8To0 T Z7 T 90 237 3.6 300 263 241 0.48 1.3 024 1.61 -1.000 0.260 0.5%
899 705 ZET TE4 31227 425 333 233 232 0.87 003 1.2 170 -1.000 0.263 0.606
5 705 3ITY T F 6 )67 425 300 235 233 0.00 V.56 0.27 1.5 -1.090 0.269 0.691
96 197 2To 839 3T 7 350 245 277 2.5 028 045 1.5 1.91 -1.090 0.263 0.789
97 10 BY T a7 S ¥ 1 047 380 329 270 245 1.4 07 0.61 1.8 1.000 0.268 0.583
91 4 87 T 67 T o2 37T 7 438 3.02 255 2.5 028 1.39 0.68 1.8 -1.000 0.277 0.697
915 197 B To 427 1700 35 246 262 220 0.68 0.5 0.67 1.5 1.0 0.278 0.&28
90 2z 7B 30T T T 4 405 417 299 220 2.09 0.4 023 133 1.5 -1.000 0.296 0.64¢
929 2 78 4Tos 310 323 41 278 26 236 158 0.6 005 1.5 1.0 038 0799
92 687 4FF 2TV 0 BN ) 35 356 258 2.35 0.82 1.27 035 V.72 -1.000 0.319 0672
93 1120 VY Ts ZW I 0 3T 366 339 2.45 230 132 0.87 0.23 1.8 -1.000 0.324 0.703
99 1120 T TT 177 533 366 312 304 2.00 0.58 039 1.5 1.5 -1.000 0.3 0.763
91 278 528 7210 5T 0 437 317 255 2.7 0.9 1.40 004 171 1.000 0.368 0.814
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It is noteworthy that, employing some 300-400 of
the most reliably estimated values of the invariants
listed in Table 1, unique values were obtained, with
perfect accuracy, for 230 of the phases having | E| values
greater than 2. Thus this structure is solvable via
estimated values of the four-phase structure invariants
alone.

6. Concluding remarks

Conditional probability distributions of the four-phase
structure invariant p=g,+ @y + ¢+ ¢, in P1, given,
in the first instance only the four magnitudes (2.1) and,
in the second instance, all seven magnitudes (2.1) and
(2.2), have been found. The distributions lead to
estimates for ¢ dependent on these magnitudes. The
initial applications strongly suggest that the results
secured here will find important application in the
solution of complex crystal structures in PT. It is sug-
gested that the methods described here, themselves an
extension of some recent work in P1, can be extended
to treat structure invariants and seminvariants in
general, and that the concept of ‘neighborhood of a
structure invariant’, introduced in an earlier paper
(Hauptman, 1975b) will play the central role in this
development.

7. Comparison with a recent result of
Giacovazzo (1975)

Just as this paper was being prepared for submission,
a paper by Giacovazzo (1975) appeared covering
material closely related to ours but employing a differ-
ent probabilistic background and a different mathem-
atical formalism. Hence a rare opportunity presented
itself to compare the different approaches.

First, it should be emphasized that, in using the
Klug formalism, Giacovazzo assumes implicitly that
the reciprocal vectors h,k,1, m are fixed and that atomic
coordinates are the primitive random variables. This
assumption contrasts sharply with the one made here
which is that the crystal structure is fixed and the
reciprocal vectors h,k,l,m are the primitive random
variables. Thus there are two kinds of probability dis-
tribution which are conceptually quite distinct (a point
made many times previously, e.g. Hauptman, 1975a),
and there is no reason to suppose that corresponding
distributions will be identical. It therefore comes as no
surprise that none of Giacovazzo’s distributions (11)-
(13) agrees with our (3.13). In particular, Giacovazzo’s
conclusion that ‘When N is large enough, (11) tells us
that the product E,F,E;E, (our EyEyE,E,) 1s probably
positive when E?+EZ+EZ—2>0 (in our notation
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E% . «+E%, +E} —2>0), probably negative when
E2+EZ+EZ<2’ cannot possibly follow from our
(3.13) which implies instead that whether P, >4 or
P, <% depends on whether an intricate interrelation-
ship among all seven magnitudes (2.1) and (2.2) holds
and not merely on a relationship among the three
magnitudes (2.2) alone. Again, it should be stressed
that it is our distribution which is the appropriate one
for crystal-structure analysis [refer again to Hauptman
(1975a)], since one is ordinarily given a fixed but un-
known crystal structure, and structure-factor ampli-
tudes are sampled from reciprocal space. Finally, we
make no use of the Gram-Charlier expansion in our
analysis, in contrast to Giacovazzo’s work, but employ
instead a mathematical formalism only recently secured
(e.g. Hauptman, 19754, b). With this background then,
the comparison between Giacovazzo’s result and ours
is particularly illuminating.

Observe next that Giacovazzo’s chief result, (11) and
(12), requires knowledge not only of seven magnitudes
but of the sign of E,EsEs (our Ey ,yEy .1 Ei.n) as well,
whereas our (3.13) depends only on the seven magni-
tudes (2.1) and (2.2). Thus comparison is possible only
between our (3.13) and Giacovazzo’s (13), the special
case that

.0

since in this case the sign of Ey, , Ey .1 E1 4+ 1S irrelevant.

Table 2 displays a large and representative sample
of 40 invariants from Table 1 for which (7.1) is approx-
imately satisfied, so that comparison between our
(3.13) and Giacovazzo’s (13) is possible. The last two
columns, headed P(+) and P(13), show the values of
P as calculated from our (3.13) and Giacovazzo’s (13)
respectively. Comparison of the entries in these two
columns reveals significant differences, and comparison
with the true cosine values, cos (T), is particularly
illuminating.

|Ep + kB +1Ey 4020,
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